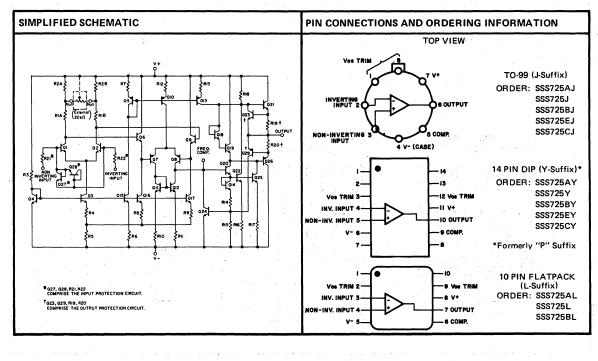
PMI

SSS725

INSTRUMENTATION OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

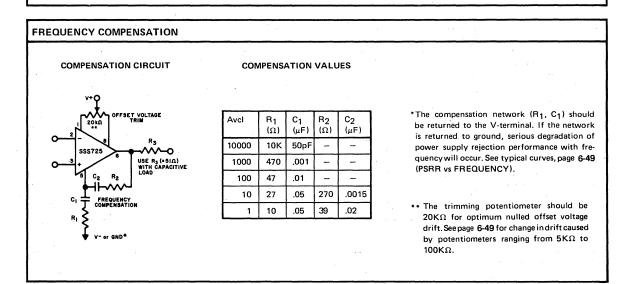

The SSS725 Series of monolithic Instrumentation Operational Amplifiers is specifically designed for accurate high-gain amplification of low level input signals in the presence of large common mode voltages. Superior DC input characteristics include very low offset voltage and current, extremely high open loop gain, low 1/f and wideband noise and a complete absence of "popcorn" noise. The extremely low offset voltage drift is further improved by an advanced nulling technique that provides optimum TCV_{OS} performance when V_{OS} has been nulled to zero. Very high common mode and power supply rejection enable accurate performance in the presence of large spurious signals.

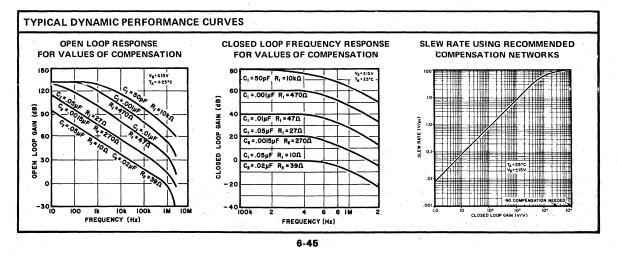
Flexible external compensation provides wide bandwidth and high slew rate operation in high closed-loop gain applications. The superior long term stability, and compatibility with MIL-STD-883 processing make the SSS725 an excellent choice for high reliability process control and aerospace applications, including strain gauge and thermocouple amplifiers, low noise audio amplifiers and instrumentation amplifiers. The SSS725

FEATURES

Very High Voltage Gain 1000 kV/V Min
Low Offset Voltage and Offset Current
Low Drift vs. Temperature (TCV _{OS}) 0.6 μ V/ ^o C Max
Low Input Voltage and Current Noise
Low Offset Voltage Drift with Time
High Common Mode Rejection 120 dB Min
High Power Supply Rejection 2 μ V/V Max
Wide Supply Range±1.5V to ±22V
±30V Input Overvoltage Protection
MIL-STD-883 Processing Available

Series are direct replacements for all 725 types providing superior DC and noise performance plus the unique feature of complete input differential voltage and output short circuit protection. Further improvements in input performance plus complete internal frequency compensation are available: request the OP-05 Instrumentation and OP-07 Ultra-low Offset Voltage Operational Amplifier data sheets.




6-44

SSS-725							
ABSOLUTE MAXIMUM RATINGS							
Supply Voltage Internal Power Dissipation (Note 1) Differential Input Voltage Input Voltage (Note 2) Output Short Circuit Duration Storage Temperature Range	±22V 500mW ±30V ±22V Indefinite -65°C to +150°C	Operating Temperature R SSS725A, SSS725 SSS725B SSS725E, SSS725C Lead Temperature Range	-55°C to +125°C -25°C to +85°C 0°C to +70°C				
NOTES: Note 1: Maximum package power dissig	pation vs. ambient tem	perature.					
Package Type	Maximum Temperature		Derate Above Maximum Ambient Temperature				

Tackage Type	Temperature for Rating	Ambient Temperature
TO-99 (J)	80°C	7.1mW/°C
DUAL-IN-LINE (Y)	100°C	10.0mW/°C
FLAT (L)	62°C	5.7mW/°C

Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

LECTRICAL CHARACTERISTICS			SSS725E			SSS725C			
These specifications apply f	for V _s = ±1	15V, T _A = 25°C, un	less otherwi	se noted					See 1
Parameter	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{os}	${ m R_s} \leqslant 20 { m k} \Omega$		0.2	0.5		0.4	1.3	mV
Input Offset Current	l _{os}			0.75	5.0		2	13	nA
Input Bias Current	۱ _B			30	80		40	110	nA
Input Noise Voltage Density	e _n	f _o = 10Hz (Note 1) f _o = 100Hz (Note 1) f _o = 1000Hz (Note 1)		9.0 8.0 7.0	15.0 9.0 7.5		9.0 8.0 7.0	15.0 9.0 7.5	nV/√F
Input Noise Current Density	in	fo = 10Hz (Note 1) fo = 100Hz (Note 1) fo = 100Hz (Note 1)		0.5 0.25 0.15	1.2 0.6 0.25		0.6 0.3 0.2	1.4 0.7 0.3	pA/√ł
Input Resistance	Rin		0.7	1.8		0.5	1.5		MΩ
Large Signal Voltage Gain	Avo	R _L ≥2kΩ Vo ^{⇔±} 10V	1,000,000	3,000,000		500,000	3,000,000		v/v
Output Voltage Swing	Vom	$\begin{array}{l} R_{L} \geqslant 10 k \Omega \\ R_{L} \geqslant 2 k \Omega \\ R_{L} \geqslant 1 k \Omega \end{array}$	±12.5 ±12.0 ±11.0	±13.0 ±12.8 ±12.5		±12.0 ±11.5 	±13.0 ±12.8 ±12.0		v v v
Input Voltage Range	CMVR		±13.5	±14.0		±13.5	±14.0	· /	·
Common Mode Rejection Ratio	CMRR	$R_{s} \leq 20 k \Omega$	120	126		100	115		dB
Power Supply Rejection Ratio	PSRR	${ m R_s} \leqslant 20 { m k} \Omega$		1.0	5.0		2.0	10	μv/\
Power Consumption	Pd			90	120		110	150	mW
Large Signal Voltage Gain	A _{vo}	$\begin{array}{l} \mathbf{R_L} \geqslant 500\Omega \\ \mathbf{V_o} \ \pm 0.5 \mathbf{V} \\ \mathbf{V_s} \ \pm 3 \mathbf{V} \end{array}$	100,000	600,000		60,000	600,000		v/v
Power Consumption	Pd	V _s ±3V		4	6		4	8	mW
The following specification	ns apply fo	or $V_s = \pm 15V, 0^{\circ}C$	≤ T _A ≤ +	70°C, unle	ss otherw	ise noted.			
Input Offset Voltage (Without external trim)	V _{os}	$R_s \leq 20k\Omega$		0.25	0.6		0.5	1.6	mV
Average Input Offset Voltage Drift (without external trim)	TCV _{os}	R _s 50∑ (Note 2)		0.7	2.0 (Note 1)		1.4	4.5 / (Note 1)	μ ∨ /°(
Average Input Offset Voltage Drift (with external trim)	TCV _{osn}	R _{\$} 50\$2 (Note 2)		0.2	0.6		0.5	1.5 (Note 1)	μv/°c
Input Offset Current	l _{os}	T _A MAX T _A MIN		0.65 0.9	5.0 7.0		2.0 3.0	15 25	nA nA
Average Input Offset Current Drift	тсі _{оs}			4	40 (Note 1)		14	150 (Note 1)	pA/ ^o
Input Bias Current	I B	T _A MAX T _A MIN		30 35	80 100		35 45	110 180	nA nA
Common Mode Rejection Ratio	CMRR	R _S ≤ 20kΩ	115	118		97	113		dB
Power Supply Rejection Ratio	PSRR	R _S ≤ 20k\$2		1.5	7.0		3.0	15	μv/\
Large Signal Voltage Gain	A _{vo}	V _o ±10V; R _L ≥2kΩ T _A MAX T _A MIN	1,000,000 800,000	3,200,000 2,700,000		400,000 300,000	3.200,000 2,700,000		V/ \
Maximum Output Voltage Swing	Vom	R _L ≥2kΩ	±12.0	±12.6		±11.0	±12.6		v

contacts to the input terminals can prevent the realization of the contact temperature.

Note 2: Thermoelectric voltages generated by dissimilar metals at the temperature should not be altered without simultaneously changing the approximately the same temperature. Therefore, the device ambient

6-48